پیش بینی هفتگی زبالة تولیدی با استفاده از مدل ترکیبی شبکة عصبی و تبدیل موجک
نویسندگان
چکیده
پیش بینی کمیت تولید، نقشی اساسی در بهینه سازی و برنامه ریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم مدیریت مواد زاید جامد، از مدل ترکیبی شبکة عصبی مصنوعی با تابع آموزش لونبرگ-مارکویت و تبدیل موجک (مدل عصبی-موجکی) برای پیش بینی کمیت تولید هفتگی در شهر تهران استفاده شده است. برای این منظور از مجموعة زمانی تولید این شهر در فاصله زمانی سالهای 1380 تا سه ماهة نخست 1385 که به صورت هفتگی مرتب شده بودند، استفاده شد. بعد از آموزش و تست مدلهای شبکه عصبی و شبکه عصبی-موجکی نتایج این مدلها با یکدیگر مورد مقایسه قرار گرفت. نتایج به دست آمده از این تحقیق نشان می دهد که استفاده از تبدیل موجک در پیش پردازش متغیرهای ورودی، تأثیر مثبتی در پیش بینی میزان تولید هفتگی در این شهر ایجاد کرده، به طوری که موجب افزایش چشمگیری در دقت محاسبات مدل شده است. این بهبود در مورد ضریب همبستگی مدل ها (r2) در مرحلة صحت سنجی، از 5/0 در مدل شبکة عصبی به 9/0 در مدل شبکة عصبی-موجکی است. همچنین معیار قدرمطلق میانگین خطای نسبی نیز در مدل شبکه عصبی از 99/5 درصد به 92/1 درصد در مدل شبکه عصبی-موجکی کاهش پیدا کرده است.
منابع مشابه
پیشبینی هفتگی زبالة تولیدی با استفاده از مدل ترکیبی شبکة عصبی و تبدیل موجک
پیشبینی کمیت تولید، نقشی اساسی در بهینهسازی و برنامهریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم...
متن کاملپیش بینی تبخیر-تعرق مرجع هفتگی با استفاده از مدل ترکیبی موجک- فازی عصبی تطبیقی
تبخیر-تعرقمرجع یکی ازمهم ترین و مؤثرترین مؤلفه ها در بهینه سازی مصرف آب کشاورزی و مدیریتمنابع آب می باشد. در سال های اخیر استفاده از روش های هوش مصنوعی و مدل هیبریدی بر پایه موجک در پیش بینی پارامترهای هیدرولوژیکی بسیار متداول گشته است. در مطالعه حاضر کاربرد روش های anfis و موجک- anfis در پیش بینی تبخیر-تعرق مرجع هفتگی مرجع در ایستگاه های همدیدی تبریز، اهواز، بندرعباس و رامسر که دارای اقلیم های...
متن کاملپیشبینی تبخیر-تعرق مرجع هفتگی با استفاده از مدل ترکیبی موجک- فازی عصبی تطبیقی
تبخیر-تعرقمرجع یکی ازمهمترین و مؤثرترین مؤلفهها در بهینهسازی مصرف آب کشاورزی و مدیریتمنابع آب میباشد. در سالهای اخیر استفاده از روشهای هوش مصنوعی و مدل هیبریدی بر پایه موجک در پیشبینی پارامترهای هیدرولوژیکی بسیار متداول گشته است. در مطالعه حاضر کاربرد روشهای ANFIS و موجک- ANFIS در پیشبینی تبخیر-تعرق مرجع هفتگی مرجع در ایستگاههای همدیدی تبریز، اهواز، بندرعباس و رامسر که دارای اقلیمهای...
متن کاملپیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA
تبدیل موجک یکی از روشهای نوین و بسیار موثر در زمینه تحلیل سیگنالها و سریهای زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، دادههای حاصل بهعنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیشبینی خشکسالی ارائه میگردد. در این تحقیق، از شبکههای عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایهای شعاعی ((RBF، سری زمانی AR...
متن کاملمقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
محیط شناسیناشر: دانشگاه تهران
ISSN 1025-8620
دوره 35
شماره 49 2009
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023